Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Refined Heinz Mean Operator Inequality (1710.11331v2)

Published 31 Oct 2017 in math.FA

Abstract: It is shown that if $A,B\in \mathbb{B}\left( \mathcal{H} \right)$ be positive operators, then \begin{equation*} \begin{aligned} A#B&\le \frac{1}{1-2\mu }{A{\frac{1}{2}}}{{F}_{\mu }}\left( {A{-\frac{1}{2}}}B{A{-\frac{1}{2}}} \right){A{\frac{1}{2}}}\ & \le \frac{1}{2}\left[ A#B+{{H}{\mu }}\left( A,B \right) \right]\ & \le \frac{1}{2}\left[ \frac{1}{1-2\mu }{A{\frac{1}{2}}} {F{\mu }}\left( {A{-\frac{1}{2}}}B{A{-\frac{1}{2}}} \right){A{\frac{1}{2}}}+{H_{\mu }}\left( A,B \right) \right]\ & \le \cdots \le \frac{1}{{{2}{n}}}A#B+\frac{{{2}n}-1}{{2n}}{H_\mu }\left( A,B \right)\ & \le \frac{1}{{{2}{n}}\left( 1-2\mu \right)}{A{\frac{1}{2}}}{F_{\mu }}\left( {A{-\frac{1}{2}}}B{A{-\frac{1}{2}}} \right){A{\frac{1}{2}}}+\frac{{{2}{n}}-1}{{{2}{n}}}{H_\mu }\left( A,B \right)\ & \le \frac{1}{{2{n+1}}}A#B+\frac{{{2}{n+1}}-1}{{2{n+1}}}{H_\mu }\left( A,B \right)\ & \le \cdots \le {H_\mu }\left( A,B \right). \end{aligned} \end{equation*} for each $\mu \in \left[ 0,1 \right]\backslash \left{ \frac{1}{2} \right}$. As an application, we present several inequalities for unitarily invariant norms. Our results are refinements of some existing inequalities.

Summary

We haven't generated a summary for this paper yet.