Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complementary Inequalities to Improved AM-GM Inequality (1706.08331v1)

Published 26 Jun 2017 in math.FA

Abstract: Following an idea of Lin, we prove that if $A$ and $B$ be two positive operators such that $0<mI\le A\le m'I\le M'I\le B\le MI$, then \begin{equation*} {{\Phi }{2}}\left( \frac{A+B}{2} \right)\le \frac{{{K}{2}}\left( h \right)}{{{\left( 1+\frac{{{\left( \log \frac{M'}{m'} \right)}{2}}}{8} \right)}{2}}}{{\Phi }{2}}\left( A#B \right), \end{equation*} and \begin{equation*} {{\Phi }{2}}\left( \frac{A+B}{2} \right)\le \frac{{{K}{2}}\left( h \right)}{{{\left( 1+\frac{{{\left( \log \frac{M'}{m'} \right)}{2}}}{8} \right)}{2}}}{{\left( \Phi \left( A \right)#\Phi \left( B \right) \right)}{2}}, \end{equation*} where $K\left( h \right)=\frac{{{\left( h+1 \right)}{2}}}{4h}$ and $h=\frac{M}{m}$ and $\Phi $ is a positive unital linear map.

Summary

We haven't generated a summary for this paper yet.