2000 character limit reached
Complementary Inequalities to Improved AM-GM Inequality (1706.08331v1)
Published 26 Jun 2017 in math.FA
Abstract: Following an idea of Lin, we prove that if $A$ and $B$ be two positive operators such that $0<mI\le A\le m'I\le M'I\le B\le MI$, then \begin{equation*} {{\Phi }{2}}\left( \frac{A+B}{2} \right)\le \frac{{{K}{2}}\left( h \right)}{{{\left( 1+\frac{{{\left( \log \frac{M'}{m'} \right)}{2}}}{8} \right)}{2}}}{{\Phi }{2}}\left( A#B \right), \end{equation*} and \begin{equation*} {{\Phi }{2}}\left( \frac{A+B}{2} \right)\le \frac{{{K}{2}}\left( h \right)}{{{\left( 1+\frac{{{\left( \log \frac{M'}{m'} \right)}{2}}}{8} \right)}{2}}}{{\left( \Phi \left( A \right)#\Phi \left( B \right) \right)}{2}}, \end{equation*} where $K\left( h \right)=\frac{{{\left( h+1 \right)}{2}}}{4h}$ and $h=\frac{M}{m}$ and $\Phi $ is a positive unital linear map.