Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 175 tok/s Pro
2000 character limit reached

Shift-enabled graphs: Graphs where shift-invariant filters are representable as polynomials of shift operations (1710.10450v2)

Published 28 Oct 2017 in eess.SP

Abstract: In digital signal processing, shift-invariant filters can be represented as a polynomial expansion of a shift operation,that is, the Z-transform representation. When extended to graph signal processing (GSP), this would mean that a shift-invariant graph filter can be represented as a polynomial of the adjacency (shift) matrix of the graph. However, the characteristic and minimum polynomials of the adjacency matrix must be identical for the property to hold. While it has been suggested that this condition might be ignored as it is always possible to find a polynomial transform to represent the original adjacency matrix by another adjacency matrix that satisfies the condition, this letter shows that a filter that is shift invariant in terms of the original graph may not be shift invariant anymore under the modified graph and vice versa. We introduce the notion of "shift-enabled graph" for graphs that satisfy the aforementioned condition, and present a concrete example of a graph that is not "shift-enabled" and a shift-invariant filter that is not a polynomial of the shift operation matrix. The result provides a deeper understanding of shift-invariant filters when applied in GSP and shows that further investigation of shift-enabled graphs is needed to make it applicable to practical scenarios.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.