Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Linear regression model with a randomly censored predictor:Estimation procedures (1710.08349v1)

Published 23 Oct 2017 in stat.AP

Abstract: We consider linear regression model estimation where the covariate of interest is randomly censored. Under a non-informative censoring mechanism, one may obtain valid estimates by deleting censored observations. However, this comes at a cost of lost information and decreased efficiency, especially under heavy censoring. Other methods for dealing with censored covariates, such as ignoring censoring or replacing censored observations with a fixed number, often lead to severely biased results and are of limited practicality. Parametric methods based on maximum likelihood estimation as well as semiparametric and non-parametric methods have been successfully used in linear regression estimation with censored covariates where censoring is due to a limit of detection. In this paper, we adapt some of these methods to handle randomly censored covariates and compare them under different scenarios to recently-developed semiparametric and nonparametric methods for randomly censored covariates. Specifically, we consider both dependent and independent randomly censored mechanisms as well as the impact of using a non-parametric algorithm on the distribution of the randomly censored covariate. Through extensive simulation studies, we compare the performance of these methods under different scenarios. Finally, we illustrate and compare the methods using the Framingham Health Study data to assess the association between low-density lipoprotein (LDL) in offspring and parental age at onset of a clinically-diagnosed cardiovascular event.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.