Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adapting general-purpose speech recognition engine output for domain-specific natural language question answering (1710.06923v1)

Published 12 Oct 2017 in cs.CL and cs.AI

Abstract: Speech-based natural language question-answering interfaces to enterprise systems are gaining a lot of attention. General-purpose speech engines can be integrated with NLP systems to provide such interfaces. Usually, general-purpose speech engines are trained on large `general' corpus. However, when such engines are used for specific domains, they may not recognize domain-specific words well, and may produce erroneous output. Further, the accent and the environmental conditions in which the speaker speaks a sentence may induce the speech engine to inaccurately recognize certain words. The subsequent natural language question-answering does not produce the requisite results as the question does not accurately represent what the speaker intended. Thus, the speech engine's output may need to be adapted for a domain before further natural language processing is carried out. We present two mechanisms for such an adaptation, one based on evolutionary development and the other based on machine learning, and show how we can repair the speech-output to make the subsequent natural language question-answering better.

Citations (5)

Summary

We haven't generated a summary for this paper yet.