Stability for two-dimensional plane Couette flow to the incompressible Navier-Stokes equations with Navier boundary conditions (1710.04855v3)
Abstract: This paper concerns with the stability of the plane Couette flow resulted from the motions of boundaries that the top boundary $\Sigma_1$ and the bottom one $\Sigma_0$ move with constant velocities $(a,0)$ and $(b,0)$, respectively. If one imposes Dirichlet boundary condition on the top boundary and Navier boundary condition on the bottom boundary with Navier coefficient $\alpha$, there always exists a plane Couette flow which is exponentially stable for nonnegative $\alpha$ and any positive viscosity $\mu$ and any $a, b \in \mathbb{R}$, or, for $\alpha<0$ but viscosity $\mu$ and the moving velocities of boundaries $(a,0), (b,0)$ satisfy some conditions stated in Theorem 1.1. However, if we impose Navier boundary conditions on both boundaries with Navier coefficients $\alpha_0$ and $\alpha_1$, then it is proved that there also exists a plane Couette flow (including constant flow or trivial steady states) which is exponentially stable provided that any one of two conditions on $\alpha_0,\alpha_1$, $a, b$ and $\mu$ in Theorem 1.2 holds. Therefore, the known results for the stability of incompressible Couette flow to no-slip (Dirichlet) boundary value problems are extended to the Navier boundary value problems.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.