Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the dimension effect of regularized linear discriminant analysis (1710.03136v2)

Published 9 Oct 2017 in math.ST and stat.TH

Abstract: This paper studies the dimension effect of the linear discriminant analysis (LDA) and the regularized linear discriminant analysis (RLDA) classifiers for large dimensional data where the observation dimension $p$ is of the same order as the sample size $n$. More specifically, built on properties of the Wishart distribution and recent results in random matrix theory, we derive explicit expressions for the asymptotic misclassification errors of LDA and RLDA respectively, from which we gain insights of how dimension affects the performance of classification and in what sense. Motivated by these results, we propose adjusted classifiers by correcting the bias brought by the unequal sample sizes. The bias-corrected LDA and RLDA classifiers are shown to have smaller misclassification rates than LDA and RLDA respectively. Several interesting examples are discussed in detail and the theoretical results on dimension effect are illustrated via extensive simulation studies.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube