Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

On a new formula for the Gorenstein dimension (1710.03066v1)

Published 9 Oct 2017 in math.RT

Abstract: Let $A$ be a finite dimensional algebra over a field $K$ with enveloping algebra $Ae=A{op} \otimes_K A$. We call algebras $A$ that have the property that the subcategory of Gorenstein projective modules in $mod-A$ coincide with the subcategory ${ X \in mod-A | Ext_Ai(X,A)=0 $ for all $i \geq 1 }$ left nearly Gorenstein. The class of left nearly Gorenstein algebras is a large class that includes for example all Gorenstein algebras and all representation-finite algebras. We prove that the Gorenstein dimension of $A$ coincides with the Gorenstein projective dimension of the regular module as $Ae$-module for left nearly Gorenstein algebras $A$. We give three application of this result. The first generalises a formula by Happel for the global dimension of algebras. The second application generalises a criterion of Shen for an algebra to be selfinjective. As a final application we prove a stronger version of the first Tachikawa conjecture for left nearly Gorenstein algebras.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)