Gauge-invariant fields and flow equations for Yang-Mills theories (1710.02494v2)
Abstract: We discuss the concept of gauge-invariant fields for non-abelian gauge theories. Infinitesimal fluctuations around a given gauge field can be split into physical and gauge fluctuations. Starting from some reference field the gauge-invariant fields are constructed by consecutively adding physical fluctuations. An arbitrary gauge field can be mapped to an associated gauge invariant field. An effective action that depends on gauge-invariant fields becomes a gauge-invariant functional of arbitrary gauge fields by associating to every gauge field the corresponding gauge-invariant field. The gauge-invariant effective action can be obtained from an implicit functional integral with a suitable "physical gauge fixing". We generalize this concept to the gauge-invariant effective average action or flowing action, which involves an infrared cutoff. It obeys a gauge-invariant functional flow equation. We demonstrate the use of this flow equation by a simple computation of the running gauge coupling and propagator in pure $SU(N)$-Yang-Mills theory.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.