Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Word Embeddings for Hyponymy with Entailment-Based Distributional Semantics (1710.02437v1)

Published 6 Oct 2017 in cs.CL

Abstract: Lexical entailment, such as hyponymy, is a fundamental issue in the semantics of natural language. This paper proposes distributional semantic models which efficiently learn word embeddings for entailment, using a recently-proposed framework for modelling entailment in a vector-space. These models postulate a latent vector for a pseudo-phrase containing two neighbouring word vectors. We investigate both modelling words as the evidence they contribute about this phrase vector, or as the posterior distribution of a one-word phrase vector, and find that the posterior vectors perform better. The resulting word embeddings outperform the best previous results on predicting hyponymy between words, in unsupervised and semi-supervised experiments.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. James Henderson (52 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.