Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Stationary analysis of a single queue with remaining service time dependent arrivals (1710.01555v1)

Published 4 Oct 2017 in math.PR

Abstract: We study a generalization of the $M/G/1$ system (denoted by $rM/G/1$) with independent and identically distributed (iid) service times and with an arrival process whose arrival rate $\lambda_0f(r)$ depends on the remaining service time $r$ of the current customer being served. We derive a natural stability condition and provide a stationary analysis under it both at service completion times (of the queue length process) and in continuous time (of the queue length and the residual service time). In particular, we show that the stationary measure of queue length at service completion times is equal to that of a corresponding $M/G/1$ system. For $f > 0$ we show that the continuous time stationary measure of the $rM/G/1$ system is linked to the $M/G/1$ system via a time change. As opposed to the $M/G/1$ queue, the stationary measure of queue length of the $rM/G/1$ system at service completions differs from its marginal distribution under the continuous time stationary measure. Thus, in general, arrivals of the $rM/G/1$ system do not see time averages. We derive formulas for the average queue length, probability of an empty system and average waiting time under the continuous time stationary measure. We provide examples showing the effect of changing the reshaping function on the average waiting time.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.