A Data-driven Approach Towards Human-robot Collaborative Problem Solving in a Shared Space (1710.00274v1)
Abstract: We are developing a system for human-robot communication that enables people to communicate with robots in a natural way and is focused on solving problems in a shared space. Our strategy for developing this system is fundamentally data-driven: we use data from multiple input sources and train key components with various machine learning techniques. We developed a web application that is collecting data on how two humans communicate to accomplish a task, as well as a mobile laboratory that is instrumented to collect data on how two humans communicate to accomplish a task in a physically shared space. The data from these systems will be used to train and fine-tune the second stage of our system, in which the robot will be simulated through software. A physical robot will be used in the final stage of our project. We describe these instruments, a test-suite and performance metrics designed to evaluate and automate the data gathering process as well as evaluate an initial data set.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.