Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Space-Partitioning RANSAC (2111.12385v2)

Published 24 Nov 2021 in cs.CV

Abstract: A new algorithm is proposed to accelerate RANSAC model quality calculations. The method is based on partitioning the joint correspondence space, e.g., 2D-2D point correspondences, into a pair of regular grids. The grid cells are mapped by minimal sample models, estimated within RANSAC, to reject correspondences that are inconsistent with the model parameters early. The proposed technique is general. It works with arbitrary transformations even if a point is mapped to a point set, e.g., as a fundamental matrix maps to epipolar lines. The method is tested on thousands of image pairs from publicly available datasets on fundamental and essential matrix, homography and radially distorted homography estimation. On average, it reduces the RANSAC run-time by 41% with provably no deterioration in the accuracy. It can be straightforwardly plugged into state-of-the-art RANSAC frameworks, e.g. VSAC.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Daniel Barath (71 papers)
  2. Gabor Valasek (1 paper)
Citations (6)

Summary

We haven't generated a summary for this paper yet.