Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Think Globally, Embed Locally --- Locally Linear Meta-embedding of Words (1709.06671v1)

Published 19 Sep 2017 in cs.CL, cs.LG, and cs.NE

Abstract: Distributed word embeddings have shown superior performances in numerous NLP tasks. However, their performances vary significantly across different tasks, implying that the word embeddings learnt by those methods capture complementary aspects of lexical semantics. Therefore, we believe that it is important to combine the existing word embeddings to produce more accurate and complete \emph{meta-embeddings} of words. For this purpose, we propose an unsupervised locally linear meta-embedding learning method that takes pre-trained word embeddings as the input, and produces more accurate meta embeddings. Unlike previously proposed meta-embedding learning methods that learn a global projection over all words in a vocabulary, our proposed method is sensitive to the differences in local neighbourhoods of the individual source word embeddings. Moreover, we show that vector concatenation, a previously proposed highly competitive baseline approach for integrating word embeddings, can be derived as a special case of the proposed method. Experimental results on semantic similarity, word analogy, relation classification, and short-text classification tasks show that our meta-embeddings to significantly outperform prior methods in several benchmark datasets, establishing a new state of the art for meta-embeddings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Danushka Bollegala (84 papers)
  2. Kohei Hayashi (87 papers)
  3. Ken-ichi Kawarabayashi (72 papers)
Citations (40)