Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Limit theorems for Random Walk excursion conditioned to have a typical area (1709.06448v3)

Published 18 Sep 2017 in math.PR

Abstract: We derive a functional central limit theorem for the excursion of a random walk conditioned on sweeping a prescribed geometric area. We assume that the increments of the random walk are integer-valued, centered, with a third moment equal to zero and a finite fourth moment. This result complements the work of \citep{DKW13} where local central limit theorems are provided for the geometric area of the excursion of a symmetric random walk with finite second moments. Our result turns out to be a key tool to derive the scaling limit of the \emph{Interacting Partially-Directed Self-Avoiding Walk} at criticality which is the object of a companion paper \citep{CarPet17a}. This requires to derive a reinforced version of our result in the case of a random walk with Laplace symmetric increments.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube