Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An automatic taxonomy of galaxy morphology using unsupervised machine learning (1709.05834v1)

Published 18 Sep 2017 in astro-ph.IM, astro-ph.CO, and astro-ph.GA

Abstract: We present an unsupervised machine learning technique that automatically segments and labels galaxies in astronomical imaging surveys using only pixel data. Distinct from previous unsupervised machine learning approaches used in astronomy we use no pre-selection or pre-filtering of target galaxy type to identify galaxies that are similar. We demonstrate the technique on the HST Frontier Fields. By training the algorithm using galaxies from one field (Abell 2744) and applying the result to another (MACS0416.1-2403), we show how the algorithm can cleanly separate early and late type galaxies without any form of pre-directed training for what an 'early' or 'late' type galaxy is. We then apply the technique to the HST CANDELS fields, creating a catalogue of approximately 60,000 classifications. We show how the automatic classification groups galaxies of similar morphological (and photometric) type, and make the classifications public via a catalogue, a visual catalogue and galaxy similarity search. We compare the CANDELS machine-based classifications to human-based classifications from the Galaxy Zoo: CANDELS project. Although there is not a direct mapping between Galaxy Zoo and our hierarchical labelling, we demonstrate a good level of concordance between human and machine classifications. Finally, we show how the technique can be used to identify rarer objects and present new lensed galaxy candidates from the CANDELS imaging.

Summary

We haven't generated a summary for this paper yet.