Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the rationality problem for forms of moduli spaces of stable marked curves of positive genus (1709.05696v2)

Published 17 Sep 2017 in math.AG, math.GR, and math.NT

Abstract: Let $M_{g, n}$ (respectively, $\overline{M_{g, n}}$) be the moduli space of smooth (respectively stable) curves of genus $g$ with $n$ marked points. Over the field of complex numbers, it is a classical problem in algebraic geometry to determine whether or not $M_{g, n}$ (or equivalently, $\overline{M_{g, n}}$) is a rational variety. Theorems of J. Harris, D. Mumford, D. Eisenbud and G. Farkas assert that $M_{g, n}$ is not unirational for any $n \geqslant 0$ if $g \geqslant 22$. Moreover, P. Belorousski and A. Logan showed that $M_{g, n}$ is unirational for only finitely many pairs $(g, n)$ with $g \geqslant 1$. Finding the precise range of pairs $(g, n)$, where $M_{g, n}$ is rational, stably rational or unirational, is a problem of ongoing interest. In this paper we address the rationality problem for twisted forms of $\overline{M_{g, n}}$ defined over an arbitrary field $F$ of characteristic $\neq 2$. We show that all $F$-forms of $\overline{M_{g, n}}$ are stably rational for $g = 1$ and $3 \leqslant n \leqslant 4$, $g = 2$ and $2 \leqslant n \leqslant 3$, $g = 3$ and $1 \leqslant n \leqslant 14$, $g = 4$ and $1 \leqslant n \leqslant 9$, $g = 5$ and $1 \leqslant n \leqslant 12$.

Summary

We haven't generated a summary for this paper yet.