Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The rationality problem for forms of $\overline{M_{0, n}}$ (1709.05698v1)

Published 17 Sep 2017 in math.AG, math.GR, and math.NT

Abstract: Let $X$ be a del Pezzo surface of degree $5$ defined over a field $F$. A theorem of Yu. I. Manin and P. Swinnerton-Dyer asserts that every Del Pezzo surface of degree $5$ is rational. In this paper we generalize this result as follows. Recall that del Pezzo surfaces of degree $5$ over a field $F$ are precisely the twisted $F$-forms of the moduli space $\overline{M_{0, 5}}$ of stable curves of genus $0$ with $5$ marked points. Suppose $n \geq 5$ is an integer, and $F$ is an infinite field of characteristic $\neq 2$. It is easy to see that every twisted $F$-form of $\overline{M_{0, n}}$ is unirational over $F$. We show that (a) if $n$ is odd, then every twisted $F$-form of $\overline{M_{0, n}}$ is rational over $F$. (b) If $n$ is even, there exists a field extension $F/k$ and a twisted $F$-form $X$ of $\overline{M_{0, n}}$ such that $X$ is not retract rational over $F$.

Summary

We haven't generated a summary for this paper yet.