Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 13 tok/s
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 198 tok/s Pro
2000 character limit reached

A Practically Competitive and Provably Consistent Algorithm for Uplift Modeling (1709.03683v1)

Published 12 Sep 2017 in cs.LG, cs.AI, and stat.ML

Abstract: Randomized experiments have been critical tools of decision making for decades. However, subjects can show significant heterogeneity in response to treatments in many important applications. Therefore it is not enough to simply know which treatment is optimal for the entire population. What we need is a model that correctly customize treatment assignment base on subject characteristics. The problem of constructing such models from randomized experiments data is known as Uplift Modeling in the literature. Many algorithms have been proposed for uplift modeling and some have generated promising results on various data sets. Yet little is known about the theoretical properties of these algorithms. In this paper, we propose a new tree-based ensemble algorithm for uplift modeling. Experiments show that our algorithm can achieve competitive results on both synthetic and industry-provided data. In addition, by properly tuning the "node size" parameter, our algorithm is proved to be consistent under mild regularity conditions. This is the first consistent algorithm for uplift modeling that we are aware of.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.