Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 129 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Tracking Triadic Cardinality Distributions for Burst Detection in High-Speed Multigraph Streams (1708.09089v1)

Published 30 Aug 2017 in cs.SI

Abstract: In everyday life, we often observe unusually frequent interactions among people before or during important events, e.g., people send/receive more greetings to/from their friends on holidays than regular days. We also observe that some videos or hashtags suddenly go viral through people's sharing on online social networks (OSNs). Do these seemingly different phenomena share a common structure? All these phenomena are associated with sudden surges of user interactions in networks, which we call "bursts" in this work. We uncover that the emergence of a burst is accompanied with the formation of triangles in some properly defined networks. This finding motivates us to propose a new and robust method to detect bursts on OSNs. We first introduce a new measure, "triadic cardinality distribution", corresponding to the fractions of nodes with different numbers of triangles, i.e., triadic cardinalities, in a network. We show that this distribution not only changes when a burst occurs, but it also has a robustness property that it is immunized against common spamming social-bot attacks. Hence, by tracking triadic cardinality distributions, we can more reliably detect bursts than simply counting interactions on OSNs. To avoid handling massive activity data generated by OSN users during the triadic tracking, we design an efficient "sample-estimate" framework to provide maximum likelihood estimate on the triadic cardinality distribution. We propose several sampling methods, and provide insights about their performance difference, through both theoretical analysis and empirical experiments on real world networks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube