Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Embedding optimal transports in statistical manifolds (1708.08148v1)

Published 27 Aug 2017 in math.PR

Abstract: We consider Monge-Kantorovich optimal transport problems on $\mathbb{R}d$, $d\ge 1$, with a convex cost function given by the cumulant generating function of a probability measure. Examples include the Wasserstein-2 transport whose cost function is the square of the Euclidean distance and corresponds to the cumulant generating function of the multivariate standard normal distribution. The optimal coupling is usually described via an extended notion of convex/concave functions and their gradient maps. These extended notions are nonintuitive and do not satisfy useful inequalities such as Jensen's inequality. Under mild regularity conditions, we show that all such extended gradient maps can be recovered as the usual supergradients of a nonnegative concave function on the space of probability distributions. This embedding provides a universal geometry for all such optimal transports and an unexpected connection with information geometry of exponential families of distributions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.