Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Submodule structures of $\mathbb C[s,t]$ over $W(0,b)$ and a new class of irreducible modules over the Virasoro algebra (1708.07272v3)

Published 24 Aug 2017 in math.QA

Abstract: For any $a,b\in\mathbb C$, $W(a,b)$ is the Lie algebra with basis ${L_m,M_m\,|\,m\in\mathbb Z}$ and relations $[L_m,L_n]=(n-m)L_{m+n},$ $[L_m,W_n]=(a+n+bm)W_{m+n}$, $[W_m,W_n]=0$ for $m,n\in\mathbb Z$. For any $\lambda\in\mathbb C*,$ $\alpha\in\mathbb C$, $h:=h(t)\in\mathbb C[t]$, there exists a non-weight module over $W(0,b)$ (resp., $W(0,1)$), denoted by $\Phi(\lambda,\alpha,h)$ (resp. $\Theta(\lambda,h)$), which is defined on the space $\mathbb C[s,t]$ of polynomials on variables $s,t$ and is free of rank one over the enveloping algebra $U(\mathbb C L_0\oplus\mathbb C W_0)$ of $\mathbb C L_0\oplus\mathbb C W_0$. In the present paper, by introducing two sequences of useful operators on $\mathbb C[s,t]$, we determine all submodules of $\mathbb C[s,t]$. We also study submodules of $\mathbb C[s,t]$ regarded as modules over the Virasoro algebra $\mathscr V!$ (with the trivial action of the center), and prove that these submodules are finitely generated if and only if ${\rm deg}\,h(t)\geq1$. In addition, it is proven that $\Phi(\lambda, \alpha,h)$ is an irreducible $\mathscr V!$-module if and only if $b=-1$, ${\rm deg}\, h(t)=1$, $\alpha\neq0$. Finally, we obtain a large family of new irreducible modules over the Virasoro algebra $\mathscr V!$, by taking various tensor products of a finite number of irreducible modules $\Phi(\lambda_i,\alpha_i, h_i)$ for $\lambda_i,\alpha_i\in\mathbb C*,$ $h_i\in\mathbb C[t]$ with an irreducible $\mathscr V!$-module $V$, where $V$ satisfies that there exists a nonnegative integer $R_V$ such that $L_m$ acts locally finitely on $V$ for $m\geq R_V$.

Summary

We haven't generated a summary for this paper yet.