Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Proportionate gradient updates with PercentDelta (1708.07227v1)

Published 24 Aug 2017 in cs.LG

Abstract: Deep Neural Networks are generally trained using iterative gradient updates. Magnitudes of gradients are affected by many factors, including choice of activation functions and initialization. More importantly, gradient magnitudes can greatly differ across layers, with some layers receiving much smaller gradients than others. causing some layers to train slower than others and therefore slowing down the overall convergence. We analytically explain this disproportionality. Then we propose to explicitly train all layers at the same speed, by scaling the gradient w.r.t. every trainable tensor to be proportional to its current value. In particular, at every batch, we want to update all trainable tensors, such that the relative change of the L1-norm of the tensors is the same, across all layers of the network, throughout training time. Experiments on MNIST show that our method appropriately scales gradients, such that the relative change in trainable tensors is approximately equal across layers. In addition, measuring the test accuracy with training time, shows that our method trains faster than other methods, giving higher test accuracy given same budget of training steps.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)