Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Relationship between Primal-Dual Method of Multipliers and Kalman Filter (1708.06881v1)

Published 23 Aug 2017 in math.OC, cs.DC, cs.IT, and math.IT

Abstract: Recently the primal-dual method of multipliers (PDMM), a novel distributed optimization method, was proposed for solving a general class of decomposable convex optimizations over graphic models. In this work, we first study the convergence properties of PDMM for decomposable quadratic optimizations over tree-structured graphs. We show that with proper parameter selection, PDMM converges to its optimal solution in finite number of iterations. We then apply PDMM for the causal estimation problem over a statistical linear state-space model. We show that PDMM and the Kalman filter have the same update expressions, where PDMM can be interpreted as solving a sequence of quadratic optimizations over a growing chain graph.

Citations (3)

Summary

We haven't generated a summary for this paper yet.