Papers
Topics
Authors
Recent
2000 character limit reached

Distributed Optimization Using the Primal-Dual Method of Multipliers

Published 2 Feb 2017 in cs.DC and math.OC | (1702.00841v1)

Abstract: In this paper, we propose the primal-dual method of multipliers (PDMM) for distributed optimization over a graph. In particular, we optimize a sum of convex functions defined over a graph, where every edge in the graph carries a linear equality constraint. In designing the new algorithm, an augmented primal-dual Lagrangian function is constructed which smoothly captures the graph topology. It is shown that a saddle point of the constructed function provides an optimal solution of the original problem. Further under both the synchronous and asynchronous updating schemes, PDMM has the convergence rate of O(1/K) (where K denotes the iteration index) for general closed, proper and convex functions. Other properties of PDMM such as convergence speeds versus different parameter- settings and resilience to transmission failure are also investigated through the experiments of distributed averaging.

Citations (89)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.