Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Constructing Convex Inner Approximations of Steady-State Security Regions (1708.06845v3)

Published 22 Aug 2017 in math.OC

Abstract: We propose a scalable optimization framework for estimating convex inner approximations of the steady-state security sets. The framework is based on Brouwer fixed point theorem applied to a fixed-point form of the power flow equations. It establishes a certificate for the self-mapping of a polytope region constructed around a given feasible operating point. This certificate is based on the explicit bounds on the nonlinear terms that hold within the self-mapped polytope. The shape of the polytope is adapted to find the largest approximation of the steady-state security region. While the corresponding optimization problem is nonlinear and non-convex, every feasible solution found by local search defines a valid inner approximation. The number of variables scales linearly with the system size, and the general framework can naturally be applied to other nonlinear equations with affine dependence on inputs. Test cases, with the system sizes up to $1354$ buses, are used to illustrate the scalability of the approach. The results show that the approximated regions are not unreasonably conservative and that they cover substantial fractions of the true steady-state security regions for most medium-sized test cases.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.