Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inner approximations for polynomial matrix inequalities and robust stability regions (1104.4905v2)

Published 26 Apr 2011 in math.OC and cs.SY

Abstract: Following a polynomial approach, many robust fixed-order controller design problems can be formulated as optimization problems whose set of feasible solutions is modelled by parametrized polynomial matrix inequalities (PMI). These feasibility sets are typically nonconvex. Given a parametrized PMI set, we provide a hierarchy of linear matrix inequality (LMI) problems whose optimal solutions generate inner approximations modelled by a single polynomial sublevel set. Those inner approximations converge in a strong analytic sense to the nonconvex original feasible set, with asymptotically vanishing conservatism. One may also impose the hierarchy of inner approximations to be nested or convex. In the latter case they do not converge any more to the feasible set, but they can be used in a convex optimization framework at the price of some conservatism. Finally, we show that the specific geometry of nonconvex polynomial stability regions can be exploited to improve convergence of the hierarchy of inner approximations.

Summary

We haven't generated a summary for this paper yet.