Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisiting knowledge transfer for training object class detectors (1708.06128v3)

Published 21 Aug 2017 in cs.CV

Abstract: We propose to revisit knowledge transfer for training object detectors on target classes from weakly supervised training images, helped by a set of source classes with bounding-box annotations. We present a unified knowledge transfer framework based on training a single neural network multi-class object detector over all source classes, organized in a semantic hierarchy. This generates proposals with scores at multiple levels in the hierarchy, which we use to explore knowledge transfer over a broad range of generality, ranging from class-specific (bicycle to motorbike) to class-generic (objectness to any class). Experiments on the 200 object classes in the ILSVRC 2013 detection dataset show that our technique: (1) leads to much better performance on the target classes (70.3% CorLoc, 36.9% mAP) than a weakly supervised baseline which uses manually engineered objectness 11. (2) delivers target object detectors reaching 80% of the mAP of their fully supervised counterparts. (3) outperforms the best reported transfer learning results on this dataset (+41% CorLoc and +3% mAP over [18, 46], +16.2% mAP over [32]). Moreover, we also carry out several across-dataset knowledge transfer experiments [27, 24, 35] and find that (4) our technique outperforms the weakly supervised baseline in all dataset pairs by 1.5x-1.9x, establishing its general applicability.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jasper Uijlings (20 papers)
  2. Stefan Popov (12 papers)
  3. Vittorio Ferrari (83 papers)
Citations (70)

Summary

We haven't generated a summary for this paper yet.