Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Phase Transition in the Maximal Influence Problem: When Do We Need Optimization? (1708.02142v2)

Published 7 Aug 2017 in cs.SI, cond-mat.stat-mech, cs.DS, physics.data-an, and physics.soc-ph

Abstract: Considerable efforts were made in recent years in devising optimization algorithms for influence maximization in networks. Here we ask: "When do we need optimization?" We use results from statistical mechanics and direct simulations on ER networks, small-world networks, power-law networks and a dataset of real-world networks to characterize the parameter-space region where optimization is required. We show that in both synthetic and real-world networks this optimization region is due to a well known physical phase transition of the network, and that it vanishes as a power-law with the network size. We then show that also from a utility-maximization perspective (when considering the costs of the optimization process), for large networks standard optimization is profitable only in a vanishing parameter region near the phase transition. Finally, we introduce a novel constant-time optimization approach, and demonstrate it through a simple algorithm that manages to give similar results to standard optimization methods in terms of the influenced-set size, while improving the results in terms of the net utility.

Citations (2)

Summary

We haven't generated a summary for this paper yet.