Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Effective submodularity of influence maximization on temporal networks (2205.05472v2)

Published 11 May 2022 in physics.soc-ph and cs.SI

Abstract: We study influence maximization on temporal networks. This is a special setting where the influence function is not submodular, and there is no optimality guarantee for solutions achieved via greedy optimization. We perform an exhaustive analysis on both real and synthetic networks. We show that the influence function of randomly sampled sets of seeds often violates the necessary conditions for submodularity. However, when sets of seeds are selected according to the greedy optimization strategy, the influence function behaves effectively as a submodular function. Specifically, violations of the necessary conditions for submodularity are never observed in real networks, and only rarely in synthetic ones. The direct comparison with exact solutions obtained via brute-force search indicate that the greedy strategy provides approximate solutions that are well within the optimality gap guaranteed for strictly submodular functions. Greedy optimization appears therefore an effective strategy for the maximization of influence on temporal networks.

Citations (6)

Summary

We haven't generated a summary for this paper yet.