Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Dark Energy Survey Year 1 Results: Weak Lensing Shape Catalogues (1708.01533v2)

Published 4 Aug 2017 in astro-ph.CO

Abstract: We present two galaxy shape catalogues from the Dark Energy Survey Year 1 data set, covering 1500 square degrees with a median redshift of $0.59$. The catalogues cover two main fields: Stripe 82, and an area overlapping the South Pole Telescope survey region. We describe our data analysis process and in particular our shape measurement using two independent shear measurement pipelines, METACALIBRATION and IM3SHAPE. The METACALIBRATION catalogue uses a Gaussian model with an innovative internal calibration scheme, and was applied to $riz$-bands, yielding 34.8M objects. The IM3SHAPE catalogue uses a maximum-likelihood bulge/disc model calibrated using simulations, and was applied to $r$-band data, yielding 21.9M objects. Both catalogues pass a suite of null tests that demonstrate their fitness for use in weak lensing science. We estimate the 1$\sigma$ uncertainties in multiplicative shear calibration to be $0.013$ and $0.025$ for the METACALIBRATION and IM3SHAPE catalogues, respectively.

Citations (132)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube