Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Optimal Trade Execution Under Endogenous Pressure to Liquidate: Theory and Numerical Solutions (1707.07284v1)

Published 23 Jul 2017 in q-fin.PM, math.OC, and q-fin.MF

Abstract: We study optimal liquidation of a trading position (so-called block order or meta-order) in a market with a linear temporary price impact (Kyle, 1985). We endogenize the pressure to liquidate by introducing a downward drift in the unaffected asset price while simultaneously ruling out short sales. In this setting the liquidation time horizon becomes a stopping time determined endogenously, as part of the optimal strategy. We find that the optimal liquidation strategy is consistent with the square-root law which states that the average price impact per share is proportional to the square root of the size of the meta-order (Bershova and Rakhlin, 2013; Farmer et al., 2013; Donier et al., 2015; T\'oth et al., 2016). Mathematically, the Hamilton-Jacobi-BeLLMan equation of our optimization leads to a severely singular and numerically unstable ordinary differential equation initial value problem. We provide careful analysis of related singular mixed boundary value problems and devise a numerically stable computation strategy by re-introducing time dimension into an otherwise time-homogeneous task.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube