Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Kimi K2 164 tok/s Pro
2000 character limit reached

Solution of the spin and pseudo-spin symmetric Dirac equation in 1+1 space-time using the tridiagonal representation approach (1707.05625v1)

Published 18 Jul 2017 in hep-th, math-ph, math.MP, and quant-ph

Abstract: The aim of this work is to find exact solutions of the Dirac equation in 1+1 space-time beyond the already known class. We consider exact spin (and pseudo-spin) symmetric Dirac equations where the scalar potential is equal to plus (and minus) the vector potential. We also include pseudo-scalar potentials in the interaction. The spinor wavefunction is written as a bounded sum in a complete set of square integrable basis, which is chosen such that the matrix representation of the Dirac wave operator is tridiagonal and symmetric. This makes the matrix wave equation a symmetric three-term recursion relation for the expansion coefficients of the wavefunction. We solve the recursion relation exactly in terms of orthogonal polynomials and obtain the state functions and corresponding relativistic energy spectrum and phase shift.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.