Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing bounded arboricity (1707.04864v2)

Published 16 Jul 2017 in cs.DS

Abstract: In this paper we consider the problem of testing whether a graph has bounded arboricity. The family of graphs with bounded arboricity includes, among others, bounded-degree graphs, all minor-closed graph classes (e.g. planar graphs, graphs with bounded treewidth) and randomly generated preferential attachment graphs. Graphs with bounded arboricity have been studied extensively in the past, in particular since for many problems they allow for much more efficient algorithms and/or better approximation ratios. We present a tolerant tester in the sparse-graphs model. The sparse-graphs model allows access to degree queries and neighbor queries, and the distance is defined with respect to the actual number of edges. More specifically, our algorithm distinguishes between graphs that are $\epsilon$-close to having arboricity $\alpha$ and graphs that $c \cdot \epsilon$-far from having arboricity $3\alpha$, where $c$ is an absolute small constant. The query complexity and running time of the algorithm are $\tilde{O}\left(\frac{n}{\sqrt{m}}\cdot \frac{\log(1/\epsilon)}{\epsilon} + \frac{n\cdot \alpha}{m} \cdot \left(\frac{1}{\epsilon}\right){O(\log(1/\epsilon))}\right)$ where $n$ denotes the number of vertices and $m$ denotes the number of edges. In terms of the dependence on $n$ and $m$ this bound is optimal up to poly-logarithmic factors since $\Omega(n/\sqrt{m})$ queries are necessary (and $\alpha = O(\sqrt{m}))$. We leave it as an open question whether the dependence on $1/\epsilon$ can be improved from quasi-polynomial to polynomial. Our techniques include an efficient local simulation for approximating the outcome of a global (almost) forest-decomposition algorithm as well as a tailored procedure of edge sampling.

Citations (20)

Summary

We haven't generated a summary for this paper yet.