Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

High Order Random Walks: Beyond Spectral Gap (1707.02799v3)

Published 10 Jul 2017 in math.CO

Abstract: We study high order random walks in high dimensional expanders; namely, in complexes which are local spectral expanders. Recent works have studied the spectrum of high order walks and deduced fast mixing. However, the spectral gap of high order walks is inherently small, due to natural obstructions that do not happen for walks on expander graphs. In this work we go beyond spectral gap, and relate the shrinkage of a $k$-cochain by the walk operator, to its structure under the assumption of local spectral expansion. A simplicial complex is called an one-sided local spectral expander, if its links have large spectral gaps and a two-sided local spectral expander if its links have large two-sided spectral gaps. We show two Decomposition Theorems (one per one-sided/two-sided local spectral assumption) : For every $k$-cochain $\phi$ defined on an $n$-dimensional local spectral expander, there exists a decomposition of $\phi$ into orthogonal' parts that are, roughly speaking, theprojections' on the $j$-dimensional cochains for $0 \leq j \leq k$. The random walk shrinks each of these parts by a factor of $\frac{k+1-j}{k+2}$ plus an error term that depends on the spectral expansion. %Our two Decomposition Theorems differ in their assumptions on the local spectral gaps - we derive different Decomposition Theorems for the cases of one-sided local spectral gap and two-sided local spectral gap.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.