Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence, Fluctuations and Large Deviations for finite state Mean Field Games via the Master Equation (1707.01819v3)

Published 6 Jul 2017 in math.PR

Abstract: We show the convergence of finite state symmetric N-player differential games, where players control their transition rates from state to state, to a limiting dynamics given by a finite state Mean Field Game system made of two coupled forward-backward ODEs. We exploit the so-called Master Equation, which in this finite-dimensional framework is a first order PDE in the simplex of probability measures, obtaining the convergence of the feedback Nash equilibria, the value functions and the optimal trajectories. The convergence argument requires only the regularity of a solution to the Master equation. Moreover, we employ the convergence method to prove a Central Limit Theorem and a Large Deviation Principle for the evolution of the N-player empirical measures. The well-posedness and regularity of solution to the Master Equation are also studied.

Summary

We haven't generated a summary for this paper yet.