Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the convergence problem in Mean Field Games: a two state model without uniqueness (1810.05492v2)

Published 12 Oct 2018 in math.OC

Abstract: We consider N-player and mean field games in continuous time over a finite horizon, where the position of each agent belongs to {-1,1}. If there is uniqueness of mean field game solutions, e.g. under monotonicity assumptions, then the master equation possesses a smooth solution which can be used to prove convergence of the value functions and of the feedback Nash equilibria of the N-player game, as well as a propagation of chaos property for the associated optimal trajectories. We study here an example with anti-monotonous costs, and show that the mean field game has exactly three solutions. We prove that the value functions converge to the entropy solution of the master equation, which in this case can be written as a scalar conservation law in one space dimension, and that the optimal trajectories admit a limit: they select one mean field game soution, so there is propagation of chaos. Moreover, viewing the mean field game system as the necessary conditions for optimality of a deterministic control problem, we show that the N-player game selects the optimizer of this problem.

Summary

We haven't generated a summary for this paper yet.