Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strong Converses Are Just Edge Removal Properties (1706.08172v4)

Published 25 Jun 2017 in cs.IT and math.IT

Abstract: This paper explores the relationship between two ideas in network information theory: edge removal and strong converses. Edge removal properties state that if an edge of small capacity is removed from a network, the capacity region does not change too much. Strong converses state that, for rates outside the capacity region, the probability of error converges to 1 as the blocklength goes to infinity. Various notions of edge removal and strong converse are defined, depending on how edge capacity and error probability scale with blocklength, and relations between them are proved. Each class of strong converse implies a specific class of edge removal. The opposite directions are proved for deterministic networks. Furthermore, a technique based on a novel, causal version of the blowing-up lemma is used to prove that for discrete memoryless networks, the weak edge removal property--that the capacity region changes continuously as the capacity of an edge vanishes--is equivalent to the exponentially strong converse--that outside the capacity region, the probability of error goes to 1 exponentially fast. This result is used to prove exponentially strong converses for several examples, including the discrete 2-user interference channel with strong interference, with only a small variation from traditional weak converse proofs.

Citations (7)

Summary

We haven't generated a summary for this paper yet.