Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Second-Order Converses via Reverse Hypercontractivity (1812.10129v2)

Published 25 Dec 2018 in cs.IT and math.IT

Abstract: A strong converse shows that no procedure can beat the asymptotic (as blocklength $n\to\infty$) fundamental limit of a given information-theoretic problem for any fixed error probability. A second-order converse strengthens this conclusion by showing that the asymptotic fundamental limit cannot be exceeded by more than $O(\tfrac{1}{\sqrt{n}})$. While strong converses are achieved in a broad range of information-theoretic problems by virtue of the "blowing-up method"---a powerful methodology due to Ahlswede, G\'acs and K\"orner (1976) based on concentration of measure---this method is fundamentally unable to attain second-order converses and is restricted to finite-alphabet settings. Capitalizing on reverse hypercontractivity of Markov semigroups and functional inequalities, this paper develops the "smoothing-out" method, an alternative to the blowing-up approach that does not rely on finite alphabets and that leads to second-order converses in a variety of information-theoretic problems that were out of reach of previous methods.

Citations (22)

Summary

We haven't generated a summary for this paper yet.