Papers
Topics
Authors
Recent
2000 character limit reached

Noncommutative products of Euclidean spaces

Published 21 Jun 2017 in math.QA, hep-th, math-ph, math.MP, and math.RA | (1706.06930v2)

Abstract: We present natural families of coordinate algebras of noncommutative products of Euclidean spaces. These coordinate algebras are quadratic ones associated with an R-matrix which is involutive and satisfies the Yang-Baxter equations. As a consequence they enjoy a list of nice properties, being regular of finite global dimension. Notably, we have eight-dimensional noncommutative euclidean spaces which are particularly well behaved and are deformations parametrised by a two-dimensional sphere. Quotients include noncommutative seven-spheres as well as noncommutative "quaternionic tori". There is invariance for an action of $SU(2) \times SU(2)$ in parallel with the action of $U(1) \times U(1)$ on a "complex" noncommutative torus which allows one to construct quaternionic toric noncommutative manifolds. Additional classes of solutions are disjoint from the classical case.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.