Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Kimi K2 157 tok/s Pro
2000 character limit reached

Analysis of dropout learning regarded as ensemble learning (1706.06859v1)

Published 20 Jun 2017 in cs.LG and stat.ML

Abstract: Deep learning is the state-of-the-art in fields such as visual object recognition and speech recognition. This learning uses a large number of layers, huge number of units, and connections. Therefore, overfitting is a serious problem. To avoid this problem, dropout learning is proposed. Dropout learning neglects some inputs and hidden units in the learning process with a probability, p, and then, the neglected inputs and hidden units are combined with the learned network to express the final output. We find that the process of combining the neglected hidden units with the learned network can be regarded as ensemble learning, so we analyze dropout learning from this point of view.

Citations (57)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com