Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Semantic Entity Retrieval Toolkit (1706.03757v2)

Published 12 Jun 2017 in cs.CL, cs.AI, and cs.IR

Abstract: Unsupervised learning of low-dimensional, semantic representations of words and entities has recently gained attention. In this paper we describe the Semantic Entity Retrieval Toolkit (SERT) that provides implementations of our previously published entity representation models. The toolkit provides a unified interface to different representation learning algorithms, fine-grained parsing configuration and can be used transparently with GPUs. In addition, users can easily modify existing models or implement their own models in the framework. After model training, SERT can be used to rank entities according to a textual query and extract the learned entity/word representation for use in downstream algorithms, such as clustering or recommendation.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.