Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Beating the Omega Clock: An Optimal Stopping Problem with Random Time-horizon under Spectrally Negative Lévy Models (1706.03724v1)

Published 12 Jun 2017 in q-fin.MF

Abstract: We study the optimal stopping of an American call option in a random time-horizon under exponential spectrally negative L\'evy models. The random time-horizon is modeled as the so-called Omega default clock in insurance, which is the first time when the occupation time of the underlying L\'evy process below a level $y$, exceeds an independent exponential random variable with mean $1/q>0$. We show that the shape of the value function varies qualitatively with different values of $q$ and $y$. In particular, we show that for certain values of $q$ and $y$, some quantitatively different but traditional up-crossing strategies are still optimal, while for other values we may have two disconnected continuation regions, resulting in the optimality of two-sided exit strategies. By deriving the joint distribution of the discounting factor and the underlying process under a random discount rate, we give a complete characterization of all optimal exercising thresholds. Finally, we present an example with a compound Poisson process plus a drifted Brownian motion.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.