Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DenseAlert: Incremental Dense-Subtensor Detection in Tensor Streams (1706.03374v1)

Published 11 Jun 2017 in cs.SI and cs.DB

Abstract: Consider a stream of retweet events - how can we spot fraudulent lock-step behavior in such multi-aspect data (i.e., tensors) evolving over time? Can we detect it in real time, with an accuracy guarantee? Past studies have shown that dense subtensors tend to indicate anomalous or even fraudulent behavior in many tensor data, including social media, Wikipedia, and TCP dumps. Thus, several algorithms have been proposed for detecting dense subtensors rapidly and accurately. However, existing algorithms assume that tensors are static, while many real-world tensors, including those mentioned above, evolve over time. We propose DenseStream, an incremental algorithm that maintains and updates a dense subtensor in a tensor stream (i.e., a sequence of changes in a tensor), and DenseAlert, an incremental algorithm spotting the sudden appearances of dense subtensors. Our algorithms are: (1) Fast and 'any time': updates by our algorithms are up to a million times faster than the fastest batch algorithms, (2) Provably accurate: our algorithms guarantee a lower bound on the density of the subtensor they maintain, and (3) Effective: our DenseAlert successfully spots anomalies in real-world tensors, especially those overlooked by existing algorithms.

Citations (66)

Summary

We haven't generated a summary for this paper yet.