Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Improved Consistent Weighted Sampling Revisited (1706.01172v1)

Published 5 Jun 2017 in cs.DS

Abstract: Min-Hash is a popular technique for efficiently estimating the Jaccard similarity of binary sets. Consistent Weighted Sampling (CWS) generalizes the Min-Hash scheme to sketch weighted sets and has drawn increasing interest from the community. Due to its constant-time complexity independent of the values of the weights, Improved CWS (ICWS) is considered as the state-of-the-art CWS algorithm. In this paper, we revisit ICWS and analyze its underlying mechanism to show that there actually exists dependence between the two components of the hash-code produced by ICWS, which violates the condition of independence. To remedy the problem, we propose an Improved ICWS (I$2$CWS) algorithm which not only shares the same theoretical computational complexity as ICWS but also abides by the required conditions of the CWS scheme. The experimental results on a number of synthetic data sets and real-world text data sets demonstrate that our I$2$CWS algorithm can estimate the Jaccard similarity more accurately, and also compete with or outperform the compared methods, including ICWS, in classification and top-$K$ retrieval, after relieving the underlying dependence.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.