Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing Gaussian Process with Applications to Super-Resolution (1706.00679v3)

Published 2 Jun 2017 in math.ST, cs.IT, math.IT, math.PR, and stat.TH

Abstract: This article introduces exact testing procedures on the mean of a Gaussian process $X$ derived from the outcomes of $\ell_1$-minimization over the space of complex valued measures. The process $X$ can be thought as the sum of two terms: first, the convolution between some kernel and a target atomic measure (mean of the process); second, a random perturbation by an additive centered Gaussian process. The first testing procedure considered is based on a dense sequence of grids on the index set of~$X$ and we establish that it converges (as the grid step tends to zero) to a randomized testing procedure: the decision of the test depends on the observation $X$ and also on an independent random variable. The second testing procedure is based on the maxima and the Hessian of $X$ in a grid-less manner. We show that both testing procedures can be performed when the variance is unknown (and the correlation function of $X$ is known). These testing procedures can be used for the problem of deconvolution over the space of complex valued measures, and applications in frame of the Super-Resolution theory are presented. As a byproduct, numerical investigations may demonstrate that our grid-less method is more powerful (it~detects sparse alternatives) than tests based on very thin grids.

Citations (1)

Summary

We haven't generated a summary for this paper yet.