On Minimax Detection of Gaussian Stochastic Sequences with Imprecisely Known Means and Covariance Matrices (2302.13254v1)
Abstract: We consider the problem of detecting (testing) Gaussian stochastic sequences (signals) with imprecisely known means and covariance matrices. The alternative is independent identically distributed zero-mean Gaussian random variables with unit variances. For a given false alarm (1st-kind error) probability, the quality of minimax detection is given by the best miss probability (2nd-kind error probability) exponent over a growing observation horizon. We explore the maximal set of means and covariance matrices (composite hypothesis) such that its minimax testing can be replaced with testing a single particular pair consisting of a mean and a covariance matrix (simple hypothesis) without degrading the detection exponent. We completely describe this maximal set.