Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Filling-enforced constraint on the quantized Hall conductivity on a periodic lattice (1705.09298v2)

Published 25 May 2017 in cond-mat.str-el

Abstract: We discuss quantum Hall effects in a gapped insulator on a periodic two-dimensional lattice. We derive a universal relation among the the quantized Hall conductivity, and charge and flux densities per physical unit cell. This follows from the magnetic translation symmetry and the large gauge invariance, and holds for a very general class of interacting many-body systems. It can be understood as a combination of Laughlin's gauge invariance argument and Lieb-Schultz-Mattis-type theorem. A variety of complementary arguments, based on a cut-and-glue procedure, the many-body electric polarization, and a fractionalization algebra of magnetic translation symmetry, are given. Our universal relation is applied to several examples to show nontrivial constraints. In particular, a gapped ground state at a fractional charge filling per physical unit cell must have either a nonvanishing Hall conductivity or anyon excitations, excluding a trivial Mott insulator.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.