Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Universally symmetric norming operators are compact (1705.08297v3)

Published 21 May 2017 in math.FA and math.OA

Abstract: We study a specific family of symmetric norms on the algebra $\mathcal B(\mathcal H)$ of operators on a separable infinite-dimensional Hilbert space. With respect to each symmetric norm in this family the identity operator fails to attain its norm. Using this, we generalize one of the main results from \cite{SP}; the hypothesis is relaxed, and consequently, the family of symmetric norms for which the result holds is extended. We introduce and study the concepts of "universally symmetric norming operators" and "universally absolutely symmetric norming operators" on a separable Hilbert space. These refer to the operators that are, respectively, norming and absolutely norming, with respect to every symmetric norm on $\mathcal B(\mathcal H)$. We establish a characterization theorem for such operators and prove that these classes are identical, and that they coincide with the class of compact operators. In particular, we provide an alternative characterization of compact operators on a separable infinite-dimensional Hilbert space.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.