Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatial Variational Auto-Encoding via Matrix-Variate Normal Distributions (1705.06821v2)

Published 18 May 2017 in cs.LG, cs.CV, cs.NE, and stat.ML

Abstract: The key idea of variational auto-encoders (VAEs) resembles that of traditional auto-encoder models in which spatial information is supposed to be explicitly encoded in the latent space. However, the latent variables in VAEs are vectors, which can be interpreted as multiple feature maps of size 1x1. Such representations can only convey spatial information implicitly when coupled with powerful decoders. In this work, we propose spatial VAEs that use feature maps of larger size as latent variables to explicitly capture spatial information. This is achieved by allowing the latent variables to be sampled from matrix-variate normal (MVN) distributions whose parameters are computed from the encoder network. To increase dependencies among locations on latent feature maps and reduce the number of parameters, we further propose spatial VAEs via low-rank MVN distributions. Experimental results show that the proposed spatial VAEs outperform original VAEs in capturing rich structural and spatial information.

Citations (6)

Summary

We haven't generated a summary for this paper yet.